

LA-UR-19-21274

Approved for public release; distribution is unlimited.

Title: Accelerated modeling of atomistic physics with machine learning

Author(s): Smith, Justin Steven; Lubbers, Nicholas Edward; Barros, Kipton Marcos;

Nebgen, Benjamin Tyler; Tretiak, Sergei; Germann, Timothy Clark; Fensin, Saryu Jindal; Roitberg, Adrian E.; Isayev, Olexandr; zubatyuk, roman; Burakovsky, Leonid; Devereux, Christian; Ranashingha, Kavindri;

Suwa, Hidemaro; Batista, Christian; Chern, Gai-Wei

Intended for: Machine Learning for Computational Fluid and Solid Dynamics,

2019-02-19/2019-02-21 (Santa Fe, New Mexico, United States)

Issued: 2019-02-19

Accelerated modeling of atomistic physics with machine learning

LANL Team

Benjamin Nebgen
Kipton Barros
Saryu Fensin
Tim Germann
Leonid Burakovsky
Nicholas Lubbers
Sergei Tretiak

Justin S. Smith

Collaborators

Olexandr Isayev
Adrian Roitberg
Roman Zubatyuk
Christian Devereux
Kavindri Ranashingha
Hidemaro Suwa
Christian Batista
Gia-Wei Chern

Machine Learning for Computational Fluid and Solid Dynamics

Molecular (atomistic) dynamics

Proteins

Materials

Energy E

$$E[\mathbf{r}_1,\mathbf{r}_2,\dots]$$

Force

$$\mathbf{f}_i = -\nabla_i E$$

In principle, requires a quantum mechanical calculation at *each* time step!

Dynamics

$$m\frac{d^2\mathbf{r}_i}{dt^2} = \mathbf{f}_i$$

Liquids

Molecular mechanics/Classical force field

The Electronic Schrödinger Equation (QM)

Pros:

- Computationally efficient
- Accurate on systems in fitting set

Cons:

- Not very transferable
- Non-reactive
- Difficult reparameterization

Pros:

- Transferable
- Accurate

Cons:

Computationally demanding

A potential solution

Solution: Develop an empirical potential that is accurate, fast and parametrizes itself

- ☐ *Machine learning* provides methods that fit this need
- ☐ Prior neural network potentials* (NNP) for organic molecules and materials...
 - > are trained to specific molecules or phases of a material
 - > are non-transferable
- ☐ Our goal: build general and accurate ML potentials

Combine big data and deep learning concepts and a new molecular

representation to produce accurate, transferable, and extensible NNPs.

Where does ML fit?

Design principles for ML potentials

Mapping from coordinates R → Energy (& Forces) but with no a-priori functional form

- Fast, accurate, and reproducible
- Reactive
- No "atom typing" required
- Conserves energy (in MD)
- Extensible to new, larger systems of atoms
- Highly automated parametrization
- Systematically improvable

Machine learning basics

Training dataset for supervised learning

Inputs = $\{x_0, x_1, x_2, ..., x_N\}$ Labels = $\{y_0, y_1, y_2, ..., y_N\}$

Types of tasks

- Regression
- Classification

Supervised Learning

A few applications

- Image recognition
- Social media moderation
- Stock market prediction

Deep Learning

and update weights with SGD

ANAKIN-ME (ANI) potentials Extensibility test set O.3 seconds on GPU ANI-1 DFT E_{T} E_{T}

Atoms-in-molecule neural network (AIM-Net)

R Zubatyuk, JS Smith, J Leszczynski, O Isayev https://doi.org/10.26434/chemrxiv.7151435.v2 2018

Our work on developing ML potentials

Descriptors for the ANI ML-based potential

O ¹	H ¹	H ²
D(H ¹)	D(H ²)	D(H ¹)
D(H ²)	D(O ¹)	D(O ¹)
A(H ¹ ;H ²)	$A(O^1;H^2)$	A(O ¹ ;H ¹)

D = distance to atom A = Angel between atoms

Cutoff function

Angular descriptors

Radial

JS Smith, O Isayev, AE Roitberg, Chem. Sci., 2017, 8, 3192-3203 J Behler and M Parrinello, Phys. Rev. Lett., 2007, 98, 146401

ANI potential training

ANI potential application

Can we predict when the model is wrong?

Ensemble disagreement can drive data generation

Good data coverage

Bad data coverage

Prediction

Phase Space

Active Learning - The Big Picture

An automated and self-consistent data generation framework

Testing transferability and extensibility

ANI-MD Benchmark

128 frames from 1ns trajectories @ 300K for each:

Chignolin Various drug molecule Trp-cage

DrugBank and Tripeptide Benchmarks

JS Smith, et al.; The Journal of Chemical Physics, (2018), 148 (24), 241733

Active-learning results vs. random sampling

Dataset size comparison

	ANI-1	ANI-1x
Datapoints	22M	5M

Relative E and F RMSE comparison

Active learning progression

JS Smith, et al.; *The Journal of Chemical Physics*, (2018), 148 (24), 241733

Transferring knowledge from DFT to CCSD(T)

- Subsample 10% of ANI-1x training data (0.5M of 5M)
- Recompute CCSD(T)/CBS level
- 340k parameters fixed, re-train 60k
- 10⁷ faster than DFT

Transfer Learning

Copy ANI-1x DFT pretrained parameters

JS Smith, et al.

https://doi.org/10.26434/chemrxiv.6744440.v1 (2018)

Outsmarting Quantum Chemistry Through Transfer Learning

JS Smith, B Nebgen, R Zubatyuk, N Lubbers, C Devereux, K Barros, S Tretiak, O Isayev, A Roitberg https://doi.org/10.26434/chemrxiv.6744440.v1 **2018** (under review at Nat. Comm.)

- New ANI-1ccx model outperforms DFT on reaction energies and torsional profiles
- A 24 core hours calculation for CCSD(T)/CBS takes 2 GPU microseconds for ANI-1ccx

Machine learning for molecular dynamics with strongly correlated electrons

Hidemaro Suwa, Justin S. Smith, Nicholas Lubbers, Cristian D. Batista, Gia-Wei Chern, Kipton Barros https://arxiv.org/abs/1811.01914 **2018** (under review at Phys. Rev. Lett.)

Trained an ML model to a toy system with variable Hubbard U through the Gutzwiller approximation

Accurately reproduces a Mott transition on systems of 2700 atoms.

ML metal potentials with active learning!

Our approach: minimize use of expert knowledge for maximum generality

Los Alamos Team

Benjamin Nebgen – T-1

Kipton Barros – T-1

Saryu Fensin – MST-8

Tim Germann – T-1

Leonid Burakovsky – T-1

Nicholas Lubbers – CCS-3

Sergei Tretiak – T-1

The General AL Framework for ML potentials

A codebase for active learning on large GPU clusters (e.g. Sierra or Summit)

Design Principles:

- Fully autonomous
- Interchangeable QM
- Interchangeable ML
- Assortment of built-in sampling methods
- Built-in testing suite
- Capable of scaling to 1000s of nodes

Application of active learning to build ML potentials

- Build a general active learning framework
- Framework interface with Quantum Espresso (QE) for DFT
- In 2 months we ran 10-20k DFT calculations on systems with 50-200 metal atoms
- Elements explored Al, Sn, Ga, Cu
- We are still evaluating results

Open science access on LLNL's Sierra super computer

How should we sample to build a general model? All possible configurations for a metal

How should we sample to build a general model?

All possible configurations for a metal LLNL Sierra

Sampling techniques

Random sampling

Technique 1 Disorder

Technique 2 Space group¹

- Configuration selected by ML
- Minimum atomic distances restrained
- Density kept within a set range
- Random a, b, c lattice constant
- Box size kept minimal

Selected sampling

Technique 3 Crystal²

- Crystal selected by human
- Random perturbation by 0.25A
- Random a, b, c lattice constant

Active learning molecular dynamics sampling

¹⁾ Images from: https://en.wikipedia.org/wiki/Space group

Images from: https://homepage.univie.ac.at/michael.leitner/lattice/index.html

Application on Aluminum (Al)!

DISCLAIMER!

We trained to DFT and are about to show results comparing to experiment.

Select crystal vs. random disorder MD sampling for Al

No human knowledge used in sampling Sampling technique 1 only: Disorder (our current work)

Crystals chosen based on human knowledge (previous literature)

Active Learning of Uniformly Accurate Inter-atomic Potentials for

Materials Simulation, [arXiv:1810.11890]

RDF of liquid Al using our ML potential

- 125ps of NPT for equilibration
- 125ps of NVT at equilibrated density
- 2048 atoms system
- Trained to DFT (PBE)
- Density vs exp ~11% off (on the level of typical DFT error)

Application on Tin (Sn)!

 β -Sn to α -Sn phase transition

Random disorder MD sampling for Sn

Active learning on Sn w/o any human intervention

Error on α -Sn with AL progress

Alpha Sn requires explicit alpha fitting

Including hand picked crystal structures

Good agreement with DFT for crystals AND barriers

Liquid Sn RDFs at variable temperatures

- 125ps of NPT for equilibration
- 125ps of NVT at equilibrated density
- 1728 atoms system
- Trained to DFT (PBE)
- Density vs exp ~9% off (on the level of typical DFT error)

Exp data: T. Itami, S. Munejiri, T. Masaki, H. Aoki, Y. Ishii, T. Kamiyama, Y. Senda, F. Shimojo, and K. Hoshino Phys. Rev. B 67, 064201 (2003)

How different sampling methods perform

Datasets:

Random = Random configurations and random space groups

Crystal = **Selected randomly perturbed crystals** using human knowledge

Testing on Crystals

Typical MEAM fitness on Crystals

Energy RMSE (meV/atom)	Force RMSE (eV/A)

44.0 0.97

Training Data	Testing Data	Energy RMSE (meV/atom)	Force RMSE (eV/A)
Crystal	Crystal	3.6	0.04
Random	Crystal	13.7 (17.7/8.3)	0.05 (0.05/0.04)
Random + Crystal	Crystal	4.4	0.03

Testing on Random

Training Data	Testing Data	Energy RMSE (meV/atom)	Force RMSE (eV/A)
Crystal	Random	250.1	1.88
Random	Random	5.9	0.09
Random + Crystal	Random	5.1	0.09

Conclusion and Outlook

Conclusions

- Sampling matters in dynamical studies
- Better data makes a better ML potential
- Active learning methods are required for better data
- Current models may be missing the ability to describe physics in some metals
- Test set results for atomistic ML models can be misleading

Opportunities

- Continue to develop better sampling techniques for metals and molecules
- Discover better uncertainty quantification methods for active learning
- Apply models to gain physical insights
- Recover long range interactions through combined charge prediction and coulomb models

Thank you!

Thanks for the open science early access allocation!

RDFs at variable pressures

Exp data: T. Narushima, T. Hattori, T. Kinoshita, A. Hinzmann, and K. Tsuji Phys. Rev. B 76, 104204 (2007)

Random disorder (no human knowledge) sampling technique

Random atom placement

- Minimum atomic distances restrained
- Density kept within a set range
- Random a, b, c lattice constant
- Box size kept minial

AL MD Sampling with current ML potential

- NVT dynamics
- Randomized starting and ending temperature
- Simulation ends with high ensemble disagreement

CCSD(T)/CBS accurate data generation

CCSD(T)

DFT

ANI-1ccx

2μs

Hydrocarbon reaction energy benchmark

Organic reaction energy benchmark

Atomic environment description

Descriptors for the ANI ML-based potential

